SpringOne2GX 2015 replay: Apache Spark for Big Data Processing

News | Pieter Humphrey | February 23, 2016 | ...

Recorded at SpringOne2GX 2015 Presenters: Ludwine Probst & Ilayaperumal Gopinathan Big Data Track Slides: http://www.slideshare.net/SpringCentral/apache-spark-for-big-data-processing

Today, we live in the world of Big Data. Hadoop and MapReduce are highly dominant in the domain of large scale data processing. However, the MapReduce model shows its limits for various types of treatment, especially for highly iterative algorithms frequently encountered in the field of Machine Learning.

Spark is an in-memory data processing framework that, unlike Hadoop, provides interactive and real-time analysis on large datasets. Furthermore, Spark has a more flexible programming model and gives better performance than Hadoop.

In this talk, we aim at giving a portrait of Spark and at browsing its ecosystem, in particular Spark Streaming and MLlib with a concrete example. We will also show how you can use Spark with Spring XD, allowing you to take advantage of the strengths in each platform.

Get the Spring newsletter

Stay connected with the Spring newsletter

Subscribe

Get ahead

VMware offers training and certification to turbo-charge your progress.

Learn more

Get support

Tanzu Spring offers support and binaries for OpenJDK™, Spring, and Apache Tomcat® in one simple subscription.

Learn more

Upcoming events

Check out all the upcoming events in the Spring community.

View all